ESTRATEGIAS DIDACTICAS

">

Comments

4/recentcomments

martes, 27 de febrero de 2018

TRANSFERENCIA DE ENERGIA















TRANSFERENCIA DE ENERGÍA Y FLUJO DE LA MATERIA




Los mecanismos de transferencia de energía son los procesos los cuales se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. El calor se transfiere mediante convección, radiación o conducción. Aunque estos tres procesos pueden tener lugar simultáneamente, puede ocurrir que uno de los mecanismos predomine sobre los otros dos. Por ejemplo, el calor se transmite a través de la pared de una casa fundamentalmente por conducción, el agua de una cacerola situada sobre un quemador de gas se calienta en gran medida por convección, y la Tierra recibe calor del Sol casi exclusivamente por radiación.
La conducción de calor es un mecanismo de transferencia de energía térmica entre dos sistemas basado en el contacto directo de sus partículas sin flujo neto de materia y que tiende a igualar la temperatura dentro de un cuerpo y entre diferentes cuerpos en contacto por medio de ondas.

La conducción del calor es muy baja en el espacio, ultra alto en el vacío y es nula en el espacio vacío ideal, espacio sin energía.

El principal parámetro dependiente del material que regula la conducción de calor en los materiales es la conductividad térmica, una propiedad física que mide la capacidad de conducción de calor o capacidad de una substancia de transferir el movimiento cinético de sus moléculas a sus propias moléculas adyacentes o a otras substancias con las que está en contacto. La inversa de la conductividad térmica es la resistividad térmica, que es la capacidad de los materiales para oponerse al paso del calor.

La convección es una de las tres formas de transferencia de calor y se caracteriza porque se produce por intermedio de un fluido (aire, agua) que transporta el calor entre zonas con diferentes temperaturas. La convección se produce únicamente por medio de materiales fluidos. Éstos, al calentarse, aumentan de volumen y, por lo tanto, disminuyen su densidad y ascienden desplazando el fluido que se encuentra en la parte superior y que está a menor temperatura. Lo que se llama convección en sí, es el transporte de calor por medio de las corrientes ascendente y descendente del fluido.

La transferencia de calor implica el transporte de calor en un volumen y la mezcla de elementos macroscópicos de porciones calientes y frías de un gas o un líquido. Se incluye también el intercambio de energía entre una superficie sólida y un fluido o por medio de una bomba, un ventilador u otro dispositivo mecánico (convección mecánica o asistida).

En la transferencia de calor libre o natural en la cual un fluido es más caliente o más frío y en contacto con una superficie sólida, causa una circulación debido a las diferencias de densidades que resultan del gradiente de temperaturas en el fluido.

Efecto invernadero

Se llama efecto invernadero al fenómeno por el cual determinados gases, componentes de una atmósfera planetaria retienen parte de la energía que el suelo emite por haber sido calentado por la radiación solar. Afecta a todos los cuerpos planetarios dotados de atmósfera. De acuerdo con el actual consenso científico, el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debida a la actividad económica humana.

Este fenómeno evita que la energía del Sol recibida constantemente por la Tierra vuelva inmediatamente al espacio, produciendo a escala planetaria un efecto similar al observado en un invernadero.

La Tierra, como todo cuerpo caliente, emite radiación, pero al ser su temperatura mucho menor que la solar, emite radiación infrarroja de una longitud de onda mucho más larga que la que recibe. Sin embargo, no toda esta radiación vuelve al espacio, ya que los gases de efecto invernadero absorben la mayor parte.

La atmósfera transfiere la energía así recibida tanto hacia el espacio (37,5%) como hacia la superficie de la Tierra (62,5%). Ello representa 324 W/m2, casi la misma cantidad de energía que la proveniente del Sol, aún sin albedo. De este modo, el equilibrio térmico se establece a una temperatura superior a la que se obtendría sin este efecto. La importancia de los efectos de absorción y emisión de radiación en la atmósfera son fundamentales para el desarrollo de la vida tal y como se conoce. De hecho, si no existiera este efecto la temperatura media de la superficie de la Tierra sería de unos -22 ºC, y gracias al efecto invernadero es de unos 14ºC.

En zonas de la Tierra cuya atmósfera tiene poca proporción de gases de efecto invernadero (especialmente de vapor de agua), como en los grandes desiertos, las fluctuaciones de temperatura entre el día (absorción de radiación solar) y la noche (emisión hacia el cielo nocturno) son muy grandes.

Desde hace unos años el hombre está produciendo un aumento de los gases de efecto invernadero , con lo que la atmósfera retiene más calor y devuelve a la Tierra aún más energía causando un desequilibrio del balance radiactivo y un calentamiento global.

La imagen muestra cómo estos flujos se combinan para mantener caliente la superficie del planeta creando el efecto invernadero. Si 235 W/m2 fuera el calor total recibido en la superficie, entonces la temperatura de equilibrio de la superficie de la Tierra sería de -22 °C (Lashof 1989). En cambio, la atmósfera de la Tierra recicla el calor que viene de la superficie y entrega unos 324 W/m2 adicionales que elevan la temperatura media de la superficie a aproximadamente +14 °C .

El efecto invernadero es un factor esencial del clima de la Tierra. Bajo condiciones de equilibrio, la cantidad total de energía que entra en el sistema por la radiación solar se compensará exactamente con la cantidad de energía radiada al espacio, permitiendo a la Tierra mantener una temperatura media constante en el tiempo.

Todos los cuerpos, por el hecho de estar a una cierta temperatura superior al cero absoluto, emiten una radiación electromagnética. La radiación electromagnética se traslada sin obstáculos a través del vacío, pero puede hacerlo también a través de medios materiales con ciertas restricciones. Las radiaciones de longitud de onda más corta (o frecuencia más alta) son más penetrantes, como ilustra el comportamiento de los rayos X cuando se los compara con la luz visible. También depende de las propiedades del medio material, especialmente del parámetro denominado transmitancia, que se refiere a la opacidad de un material dado para radiación de una determinada longitud de onda.

Calentamiento global en el pasado

Los geólogos creen que la Tierra experimentó un calentamiento global durante el Jurásico inferior con elevaciones medias de temperatura que llegaron a 5 ºC. Ciertas investigaciones indican que esto fue la causa de que se acelerase la erosión de las rocas hasta en un 400%, un proceso en el que tardaron 150.000 años en volver los valores de dióxido de carbono a niveles normales. Posteriormente se produjo también otro episodio de calentamiento global conocido como Máximo termal del Paleoceno-Eoceno[24]

Efectos potenciales

Muchas organizaciones públicas, organizaciones privadas, gobiernos y personas individuales están preocupados por que el calentamiento global pueda producir daños globales en el medio ambiente y la agricultura.
Esto es materia de una controversia considerable, con los grupos ecologistas exagerando los daños posibles y los grupos cercanos a la industria cuestionando los modelos climáticos y las consecuencias del calentamiento global  subvencionando ambos a los científicos para que también lo hagan.

Debido a los efectos potenciales en la salud humana y en la economía, y debido a su impacto en el ambiente, el calentamiento global es motivo de gran preocupación. Se han observado ciertos procesos y se los ha relacionado con el calentamiento global. La disminución de la capa de nieve, la elevación del nivel de los mares y los cambios meteorológicos son consecuencias del calentamiento global que pueden influir en las actividades humanas y en los ecosistemas. Algunas especies pueden ser forzadas a emigrar de sus hábitats para evitar su extinción debido a las condiciones cambiantes, mientras otras especies pueden extenderse. Pocas de las ecorregiones terrestres pueden esperar no resultar afectadas.

Elevación del nivel de los mares, medido en 23 estaciones fijas, entre 1900 y 2000.
Otro motivo de gran preocupación para algunos es la elevación del nivel de los mares. Los niveles de los mares se están elevando entre 1 y 2 centímetros por decenio, y algunas naciones isleñas del Océano Pacífico, como Tuvalu, están trabajando en los detalles de una eventual evacuación. El calentamiento global da lugar a elevaciones del nivel marino debido a que el agua de los mares se expande cuando se calienta, además de que se produce un aumento de la cantidad de agua líquida procedente del adelgazamiento de los casquetes polares, del hielo marino y de la reducción de los glaciares. En palabras del TAR del IPCC:

Se prevé que el nivel medio global del mar se elevará entre 9 y 99 cm entre 1990 y 2100  y en caso de que todo el hielo de la Antártida se derritiera, el nivel del mar aumentaría 125 m.

Con un aumento de 6 m, se inundarían Londres y Nueva York. Esto es debido primariamente a la expansión térmica y a la pérdida de masa de los glaciares y casquetes polares.

Conforme el clima se haga más cálido la evaporación se incrementará. Esto causaría un aumento de las precipitaciones lluviosas y más erosión. Mucha gente piensa que esto podría resultar en un tiempo meteorológico más extremo conforme progrese el calentamiento global. El TAR del IPCC dice:

Se prevé que la concentración global de vapor de agua y las precipitaciones se incrementarán durante el siglo XXI. Para la segunda mitad del siglo XXI es probable que las precipitaciones se hayan incrementado en las latitudes medio altas y en la Antártida en invierno. En las bajas latitudes habrá tanto incrementos como decrecimientos regionales según diferentes áreas. En la mayoría de las áreas serán probables variaciones interanuales y se espera un incremento en las precipitaciones.

El calentamiento global tendría otros efectos menos evidentes. La corriente del Atlántico norte, por ejemplo, se debe a los cambios de temperatura. Parece ser que, conforme el clima se hace más cálido, esta corriente está disminuyendo, y esto quiere decir que áreas como Escandinavia y Gran Bretaña, que son calentadas por esta corriente, podrían presentar un clima más frío, en lugar del calentamiento general global.

Hoy se teme que el calentamiento global sea capaz de desencadenar cambios bruscos de temperatura. La corriente del Atlántico Norte data de la época del deshielo de la última glaciación (hace 14.000 años). Hace 11.000 años esa corriente sufrió una interrupción que duró 1.000 años. Esto provocó la pequeña glaciación conocida como Joven Dryas  el nombre de una flor salvaje alpina que duró 900 años en el noroeste de Norteamérica y el norte de Europa. (Ver la discusión sobre la teoría del caos para ideas relacionadas.)

El calentamiento global modificaría la distribución de la fauna y floras del planeta. Ello supondría la expansión de enfermedades de las que algunos de esos animales son portadores. Tal es el caso de la malaria, el dengue o la fiebre amarilla, cuyos vectores son ciertas especies de mosquitos que habitan principalmente en zonas tropicales.

El calentamiento global también podría tener efectos positivos, ya que las mayores temperaturas y mayores concentraciones de CO2 pueden mejorar la productividad de los ecosistemas. Los datos aportados por satélites muestran que la productividad del Hemisferio Norte se ha incrementado desde 1982. Por otro lado, un incremento en la cantidad total de la biomasa producida no es necesariamente bueno, ya que puede disminuir la biodiversidad aunque florezcan un pequeño número de especies. De forma similar, desde el punto de vista de la economía humana, un incremento en la biomasa total pero un descenso en las cosechas podría ser una desventaja. Además, los modelos del IPCC predicen que mayores concentraciones de CO2 podrían favorecer la flora hasta cierto punto, ya que en muchas regiones los factores limitantes son el agua y los nutrientes, no la temperatura o el CO2. Tras ese punto, incluso aunque los efectos invernadero y del calentamiento continuasen, podría no haber ningún incremento del crecimiento.

Otro posible punto de discusión es la influencia de los efectos del calentamiento global en el equilibrio económico humano norte-sur. Por ejemplo, si provocaría una mayor desertización de los países áridos y semiáridos y un clima más benigno en los países fríos, o bien si el efecto sería diferente.

En el plano económico, el Informe Stern encargado por el gobierno británico en 2005 pronosticó una recesión del 20% del PIB mundial debido al cambio climático, si no se tomaban una serie de medidas preventivas que, en conjunto, absorberían el 1% del PIB mundial.

Actividad 4


¿Cuáles son los mecanismos de transferencia de energía y flujo de la materia?
Explica el efecto invernadero.
Realiza una monografía sobre el fenómeno del niño, de la niña y el calentamiento global.

Rebajas 50%

Libros de Interés

Lcda. Maria de los Angeles. Con la tecnología de Blogger.

Solo por un DÍA

AIRE ACONDICIONADO PORTATIL